原文服务方: 江西科学       
摘要:
针对影响堆浸工艺铀矿浸出率的因素较多且具有非线性的特点,提出一种利用核主成分分析(KPCA)进行参数处理,整合冗余,降低维数,并将处理后得到的6个主成分作为支持向量机(SVM)测量模型输入的预测方法.在此过程中,利用粒子群算法(PSO)优化核主成分分析和支持向量机的参数,使模型具有较高的训练精度.在此基础上,对铀矿堆浸进行建模仿真,并进行预测.结果表明,基于KPCA-SVM的铀矿累计浸出率模型与BP神经网络方法相比,具有有效降低数据维数、在小样本条件下学习更加有效、建模采样过程更快、预测精度更高的优点.
推荐文章
基于KPCA-SVM模型的 电力负荷最大值短期预测方法
电力系统
负荷
核主成分分析(KPCA)
支持向量机(SVM)
预测模型
铀矿堆浸分形动力学模型
铀矿
堆浸铀矿石
粒径分布
分维数
动力学模型
基于KPCA-SVM的同期线损数据治理研究
核主成分分析
支持向量机
同期线损
预测
基于KPCA-SVM模型的 电力负荷最大值短期预测方法
电力系统
负荷
核主成分分析(KPCA)
支持向量机(SVM)
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于KPCA-SVM的预测模型在铀矿堆浸中的应用
来源期刊 江西科学 学科
关键词 累计铀浸出率 预测 核主成分分析 支持向量机 粒子群算法
年,卷(期) 2015,(1) 所属期刊栏目 工程与材料科学
研究方向 页码范围 106-111
页数 6页 分类号 N794
字数 语种 中文
DOI 10.13990/j.issn1001-3679.2015.01.025
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (24)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (3)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
累计铀浸出率
预测
核主成分分析
支持向量机
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江西科学
双月刊
1001-3679
36-1093/N
大16开
1983-01-01
chi
出版文献量(篇)
4032
总下载数(次)
0
总被引数(次)
17843
论文1v1指导