原文服务方: 华侨大学学报(自然科学版)       
摘要:
为提高时间序列预测精度及降低预测过程中的计算复杂度,提出一种基于核主成分分析(KPCA)与最小二乘支持向量机(LSSVM)相结合的预测方法.首先,将输入数据通过核方法映射至高维特征空间;然后,在特征空间上提取有效非线性主元;最终,通过LSSVM建立时间序列模型.为验证KPCA-LSSVM方法的有效性,将其应用于交通流及视频流预测中,在同等条件下,与单一的LSSVM及神经网络等预测方法进行比较.实验结果表明:基于KPCA-LSSVM建立的模型具有较好的推广性及较高的辨识精度.
推荐文章
基于KPCA-LSSVM的软测量建模方法
软测量
核主成分分析(KPCA)
最小二乘支持向量机(LSSVM)
特征提取
混沌时间序列的LSSVM预测方法
混沌时间序列
相空间重构
最小二乘支持向量机
粒子群优化
预测模型
基于KPCA-LSSVM的健康档案空腹血糖水平预测研究
空腹血糖
健康档案
主成分分析(PCA)
核主成分分析(KPCA)
最小二乘向量机(LSSVM)
一种基于KPCA-LSSVM的可用带宽在线预测算法
可用带宽
在线预测
核主成分分析
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 KPCA-LSSVM方法在视频时间序列预测中应用
来源期刊 华侨大学学报(自然科学版) 学科
关键词 时间序列预测 交通流量 视频流量 核主成分分析 最小二乘支持向量机
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 281-285
页数 5页 分类号 TP183
字数 语种 中文
DOI 10.11830/ISSN.1000-5013.201708019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李军 兰州交通大学自动化与电气工程学院 70 490 13.0 19.0
2 张观东 兰州交通大学自动化与电气工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (111)
共引文献  (144)
参考文献  (16)
节点文献
引证文献  (2)
同被引文献  (15)
二级引证文献  (0)
1980(3)
  • 参考文献(0)
  • 二级参考文献(3)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(12)
  • 参考文献(0)
  • 二级参考文献(12)
2008(12)
  • 参考文献(0)
  • 二级参考文献(12)
2009(14)
  • 参考文献(3)
  • 二级参考文献(11)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(12)
  • 参考文献(1)
  • 二级参考文献(11)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(12)
  • 参考文献(5)
  • 二级参考文献(7)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时间序列预测
交通流量
视频流量
核主成分分析
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2681
总下载数(次)
0
总被引数(次)
14643
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导