基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
糖尿病是一种可防可控的慢性疾病,会产生很多并发症,对人体危害很大,因此早期诊断糖尿病并干预生活方式对预防糖尿病慢性并发症十分必要.利用健康档案中数据来预测空腹血糖水平,因为空腹血糖水平的高低是早期诊断和干预的一个重要依据,但是健康档案中数据存在维度广、噪声多、强耦合、非线性等特点,为此提出了基于KPCA和LSSVM结合的方法进行建模,并将LSSVM、PCA-LSSVM、KPCA-LSSVM这3种模型进行比较,结果表明KPCA-LSSVM准确性比LSSVM、PCA-LSSVM大幅提高,ROC曲线的积分面积也接近于1,说明KPCA-LSSVM能够运用于空腹血糖的预测,也为医疗数据挖掘提供一种新的参考办法.
推荐文章
KPCA-LSSVM方法在视频时间序列预测中应用
时间序列预测
交通流量
视频流量
核主成分分析
最小二乘支持向量机
基于KPCA-LSSVM的软测量建模方法
软测量
核主成分分析(KPCA)
最小二乘支持向量机(LSSVM)
特征提取
KPCA-LSSVM方法在视频时间序列预测中应用
时间序列预测
交通流量
视频流量
核主成分分析
最小二乘支持向量机
一种基于KPCA-LSSVM的可用带宽在线预测算法
可用带宽
在线预测
核主成分分析
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于KPCA-LSSVM的健康档案空腹血糖水平预测研究
来源期刊 计算机工程与应用 学科 工学
关键词 空腹血糖 健康档案 主成分分析(PCA) 核主成分分析(KPCA) 最小二乘向量机(LSSVM)
年,卷(期) 2018,(13) 所属期刊栏目 工程与应用
研究方向 页码范围 241-245
页数 5页 分类号 TP39
字数 4185字 语种 中文
DOI 10.3778/j.issn.1002-8331.1702-0014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 帅仁俊 南京工业大学计算机科学与技术学院 38 154 7.0 10.0
2 查代奉 九江学院理学院 54 170 7.0 9.0
3 江燕 南京工业大学计算机科学与技术学院 3 15 2.0 3.0
4 张姝 南京工业大学电气工程与控制科学学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (19)
参考文献  (15)
节点文献
引证文献  (7)
同被引文献  (45)
二级引证文献  (5)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(14)
  • 参考文献(2)
  • 二级参考文献(12)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(4)
  • 参考文献(3)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(7)
  • 引证文献(4)
  • 二级引证文献(3)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
空腹血糖
健康档案
主成分分析(PCA)
核主成分分析(KPCA)
最小二乘向量机(LSSVM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导