基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In modern textile industry, Tissue online Automatic Inspection (TAI) is becoming an attractive alternative to Human Vision Inspection (HVI). HVI needs a high level of attention nevertheless leading to low performance in terms of tissue inspection. Based on the co-occurrence matrix and its statistical features, as an approach for defects textile identification in the digital image, TAI can potentially provide an objective and reliable evaluation on the fabric production quality. The goal of most TAI systems is to detect the presence of faults in textiles and accurately locate the position of the defects. The motivation behind the fabric defects identification is to enable an on-line quality control of the weaving process. In this paper, we proposed a method based on texture analysis and neural networks to identify the textile defects. A feature extractor is designed based on Gray Level Co-occurrence Matrix (GLCM). A neural network is used as a classifier to identify the textile defects. The numerical simulation showed that the error recognition rates were 100% for the training and 100%, 91% for the best and worst testing respectively.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
一种基于 GLCM 的运动目标检测新方法
灰度共生矩阵
运动目标检测
纹理特征
混合高斯模型
协同计算
Identification of bacterial fossils in marine source rocks in South China
South China
Excellent marine source rocks
Bacterial fossil
Sedimentary environment
GLCM和DWT特征在打印文件机源认证中的应用
打印文件机源认证
灰度共生矩阵
离散小波变换
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Identification of Textile Defects Based on GLCM and Neural Networks
来源期刊 电脑和通信(英文) 学科 医学
关键词 Image Processing Neural Network Gray-Level CO-OCCURRENCE MATRICES (GLCM)
年,卷(期) 2015,(12) 所属期刊栏目
研究方向 页码范围 1-8
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Image
Processing
Neural
Network
Gray-Level
CO-OCCURRENCE
MATRICES
(GLCM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导