作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前大部分微博情绪分析研究集中在粗粒度情绪的划分,但细粒度微博情绪更能反映公众对舆论热点、政策的反应.因此提出了一种结合朴素贝叶斯和K最近邻的集成算法,着重对新浪微博展开了情绪识别与分析的研究.首先采用朴素贝叶斯分类算法将微博分为有无情绪两类.然后根据情绪本体库的分类规则,分别构建待预测微博和已标注微博的21维情绪向量.最后采用K最近邻算法,计算待预测情绪微博与已标注情绪微博的向量相似度,从而获取待预测微博的细粒度情绪.实验表明K最近邻算法的引入,在微博细粒度情绪识别的准确率上取得了较好的效果.
推荐文章
多策略中文微博细粒度情绪分析研究
细粒度情绪分析
中文微博
朴素贝叶斯
SVM
KNN
基于Modbus功能码细粒度过滤算法的研究
Modbus TCP/IP协议
功能码
细粒度过滤
数据存储结构
细粒度并行计算编程模型研究
细粒度并行计算
图形处理器
图形处理器的通用计算
Cell
统一计算设备架构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 细粒度微博情绪识别的集成算法研究
来源期刊 智能计算机与应用 学科 工学
关键词 情绪分析 细粒度 朴素贝叶斯 K最近邻 微博
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 32-35
页数 4页 分类号 TP391
字数 4753字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王红 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (299)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
情绪分析
细粒度
朴素贝叶斯
K最近邻
微博
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能计算机与应用
双月刊
2095-2163
23-1573/TN
大16开
哈尔滨市南岗区繁荣街155号(哈工大新技术楼916室)
14-144
1985
chi
出版文献量(篇)
6183
总下载数(次)
26
论文1v1指导