作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to it, a direct procedure could be established with the objective to simulate in an as general as possible way the steady state and transient behaviour of characteristic parameters of single- and/or (now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant channels. Their validity could be confirmed by a wide range of verification and validation runs, showing very satisfactory results. The resulting universally applicable code package CCM should provide a fundamental element for the simulation of thermal-hydraulic situations over a wide range of complex systems (such as different types of heat exchangers and steam generators as being applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores etc). Thereby the derived set of equations for different coolant channels (distinguished by their key numbers) as appearing in these systems can be combined with other ODE-s and non-linear algebraic relations from additional parts of such an overall model. And these can then to be solved by applying an appropriate integration routine. Within the solution procedure, however, mathematical discontinuities can arise. This due to the fact that along such a coolant channel transitions from single- to two-phase flow regimes and vice versa could take place. To circumvent these difficulties it will in the presented approach be proposed that the basic coolant channel (BC) is subdivided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a single or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and after apply
推荐文章
Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geo
Geochemistry
Geothermometry
Mixing
Thermal effluents
Guelma
Algeria
The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal
Hydrogeochemistry
Thermal waters
Multivariate statistical analysis
Silica geothermometers
Mixing models
Cold groundwaters
Fiber Channel协议中CRC编码的硬件实现
光缆通道
循环冗余校验
协议
仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Thermal-Hydraulic Coolant Channel Module (CCM) for Single- and Two-Phase Flow
来源期刊 应用数学(英文) 学科 医学
关键词 Applied Mathematics NON-LINEAR Partial Differential Equations of First Order THERMAL-HYDRAULICS of Single- and TWO-PHASE Flow Separate-Region Mixture-Fluid Model Concept
年,卷(期) 2015,(12) 所属期刊栏目
研究方向 页码范围 2014-2044
页数 31页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Applied
Mathematics
NON-LINEAR
Partial
Differential
Equations
of
First
Order
THERMAL-HYDRAULICS
of
Single-
and
TWO-PHASE
Flow
Separate-Region
Mixture-Fluid
Model
Concept
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导