The consequence of the 5D projection theory [1] is extended beyond the Gell-Mann Standard Model for hadrons to cover astronomical objects and galaxies. The proof of Poincare conjecture by Pe-relman’s differential geometrical techniques led us to the consequence that charged massless spinors reside in a 5D void of a galactic core, represented by either an open 5D core or a closed, time frozen, 3D × 1D space structure, embedded in massive structural stellar objects such as stars and planets. The open galactic core is obtained from Ricci Flow mapping. There exist in phase, in plane rotating massless spinors within these void cores, and are responsible for 1) the outward spiral motion of stars in the galaxy in the open core, and 2) self rotations of the massive stellar objects. It is noted that another set of eigen states pertaining to the massless charged spinor pairs rotating out of phase in 1D (out of the 5D manifold) also exist and will generate a relatively weak magnetic field out of the void core. For stars and planets, it forms the intrinsic dipole field. Due to the existence of a homogeneous 5D manifold from which we believe the universe evolves, the angular momentum arising from the rotation of the in-phase spinor pairs is proposed to be counter-balanced by the rotation of the matter in the surrounding Lorentz domain, so as to conserve net zero angular momentum. Explicit expression for this total angular momentum in terms of a number of convergent series is derived for the totally enclosed void case/core, forming in general the structure of a star or a planet. It is shown that the variables/parameters in the Lorentz space-time domain for these stellar objects involve the object’s mass M, the object’s Radius R, period of rotation P, and the 5D void radius Ro, together with the Fermi energy Ef and temperature T of the massless charged spinors residing in the void. We discovered three laws governing the relationships between Ro/R, T, Ef and the angular momentum Iω of such astronomical object of interest