基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确的风资源评估是风电场规划和设计的前提.为了提高风电场风资源评估的精度,提出了一种基于混合神经网络的风电场风资源评估方法,该方法可综合利用风电场附近区域信息进行评估.首先根据风电场和附近参考气象站的同期数据建立基于混合神经网络的相关模型,训练得到神经网络的权值参数,为了提高神经网络的学习能力和避免陷入局部最优,混合神经网络采用不同的训练方法,并且采用自适应粒子群算法进行优化;再将参考气象站的历史观测数据应用到该模型中,即可得到风电场的长期风速特性,在此基础上进行风资源评估参数的计算.仿真结果表明该方法具有较高的精度.
推荐文章
基于改进BP神经网络的风电场无功补偿优化
风电场
潮流计算
无功补偿容量
BP神经网络
测风塔代表性对复杂地形风电场风能资源评估的影响
复杂地形
风电场
测风塔
CFD
风能资源评估
基于Wasp的工业园区分散式风电场风资源评估应用
分散式风电
粗糙度
障碍物
风资源评估
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合神经网络的风电场风资源评估
来源期刊 电工技术学报 学科 工学
关键词 风电场 风资源评估 混合神经网络 自适应粒子群优化
年,卷(期) 2015,(14) 所属期刊栏目 电力系统
研究方向 页码范围 370-376
页数 7页 分类号 TM614
字数 5169字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周有庆 湖南大学电气与信息工程学院 167 2736 27.0 44.0
2 王娜 湖南大学电气与信息工程学院 40 256 9.0 15.0
3 邵霞 湖南大学电气与信息工程学院 26 167 8.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (15)
参考文献  (12)
节点文献
引证文献  (8)
同被引文献  (51)
二级引证文献  (16)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(5)
  • 参考文献(5)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(7)
  • 引证文献(1)
  • 二级引证文献(6)
2019(8)
  • 引证文献(3)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
风电场
风资源评估
混合神经网络
自适应粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电工技术学报
半月刊
1000-6753
11-2188/TM
大16开
北京市西城区莲花池东路102号天莲大厦10层
6-117
1986
chi
出版文献量(篇)
8330
总下载数(次)
38
总被引数(次)
195555
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导