作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高网络流量预测精度,针对最小二乘支持向量机LSSVM (Least Squares Support Vector Machine)参数优化问题,提出一种改进人工蜂群ABC(artificial bee colony)算法优化LSSVM的网络流量预测模型(ABC-LSSVM).该模型根据混沌理论对网络流量时间序列进行重构,然后将网络流量预测精度作为优化目标,通过ABC算法找到最优的LSSVM参数,并建立网络流量预测模型,最后采用仿真对比实验测试模型的性能.仿真结果表明,相对于参比模型,ABC-LSSVM解决了LSSVM参数优化的难题,能够更加准确刻画网络流量复杂变化规律,提高了网络流量的预测精度.
推荐文章
基于改进灰狼优化算法的网络流量预测模型
网络流量预测
小波包分解
灰狼横纵多维混沌寻优算法
Elman神经网络
GAFSA优化SVR的网络流量预测模型研究
网络流量预测
参数优化
支持向量回归机
全局人工鱼群算法
自相似性
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
基于小波降噪和改进免疫优化的BP模型网络流量预测
网络流量
BP网络
人工免疫
参数优化
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进ABC算法优化LSSVM的网络流量预测模型
来源期刊 计算机应用与软件 学科 工学
关键词 网络流量 人工蜂群优化算法 最小二乘支持向量机 预测模型 相空间重构
年,卷(期) 2015,(1) 所属期刊栏目 信息技术交流
研究方向 页码范围 323-326
页数 4页 分类号 TP391.9
字数 3032字 语种 中文
DOI 10.3969/j.issn.1000-386x.2015.01.081
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许爱军 广州铁路职业技术学院信息工程系 56 328 10.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (111)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (30)
二级引证文献  (9)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(9)
  • 参考文献(4)
  • 二级参考文献(5)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
网络流量
人工蜂群优化算法
最小二乘支持向量机
预测模型
相空间重构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导