基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
SVM在处理不平衡数据分类问题(class imbalance problem)时,其分类结果常倾向于多数类。为此,综合考虑类间不平衡和类内不平衡,提出一种基于聚类权重的分阶段支持向量机(WSVM)。预处理时,采用K均值算法得到多数类中各样本的权重。分类时,第一阶段根据权重选出多数类内各簇边界区域的与少数类数目相等的样本;第二阶段对选取的样本和少数类样本进行初始分类;第三阶段用多数类中未选取的样本对初始分类器进行优化调整,当满足停止条件时,得到最终分类器。通过对UCI数据集的大量实验表明,WSVM在少数类样本的识别率和分类器的整体性能上都优于传统分类算法。
推荐文章
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
改进的SVM解决背景知识数据中的类不平衡
类不平衡
支持向量机
背景知识
恐怖行为方式预测
MAROB
面向不平衡数据分类的复合SVM算法研究
不平衡数据
支持向量机
自适应合成采样
不同错误代价
修正算法
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类权重分阶段的SVM解不平衡数据集分类
来源期刊 计算机工程与应用 学科 工学
关键词 不平衡数据集 权重分配模型 支持向量机(SVM)
年,卷(期) 2015,(21) 所属期刊栏目 网络、通信、安全
研究方向 页码范围 133-137
页数 5页 分类号 TP181
字数 4039字 语种 中文
DOI 10.3778/j.issn.1002-8331.1311-0145
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张涛 西安建筑科技大学信息与控制工程学院 41 242 8.0 15.0
2 马春森 中国农业科学院植物保护研究所 51 758 17.0 26.0
3 王超学 西安建筑科技大学信息与控制工程学院 17 342 9.0 17.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (138)
参考文献  (14)
节点文献
引证文献  (9)
同被引文献  (22)
二级引证文献  (12)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(12)
  • 参考文献(2)
  • 二级参考文献(10)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(6)
  • 参考文献(3)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(7)
  • 引证文献(4)
  • 二级引证文献(3)
2019(8)
  • 引证文献(2)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
不平衡数据集
权重分配模型
支持向量机(SVM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导