摘要:
厌氧铵氧化(anaerobic ammonium oxidation;anammox)是20世纪末被发现的氮循环新途径,这一重大发现不仅改变了生物代谢与物质循环的经典理论,而且深刻影响了对生物能量来源的认识,无光深海这个巨大的空间又多了一个可以进行化能自养"固碳"的微生物新成员.如果说海底热泉自养生物的发现是对"万物生长靠太阳"这一古训的挑战,广布于各种缺氧环境的anammox细菌的发现则可以说是对这一古训的完胜.anammox细菌以NO2-为最终电子受体氧化NH4+,生成N2,与反硝化微生物相似,在环境中行使着无机氮去除这一生物地球化学作用.然而,与异养的反硝化细菌不同,anammox细菌为无机化能自养细菌,从铵的厌氧氧化中获得代谢能形成跨膜质子驱动力(proton motive force;pmf)并合成细胞储能分子——三磷酸腺苷(ATP),进而进行无机碳固定.虽然anammox细菌与随后发现的另一极其重要的海洋氮素转化微生物——氨氧化古菌(AOA)——皆为化能自养微生物,但是,AOA以氨(而非铵根离子)为电子供体并以O2为最终电子受体进行能量代谢.因此,AOA生态过程主要发生在含氧的海水和沉积物中,而anammox细菌在缺氧的海水和沉积物中分布广泛,并在一些典型海洋极端环境中(如深海热液和海底冷泉)也有存在.一些研究显示,海洋中30%~70%氮气的产生可能源于anammox过程.在含氮污水处理工程领域,anammox构成了一种崭新的低能耗、低成本、高效率和节能减排技术.然而,这一科学发现来之不易,早在20世纪60年代就有科学家根据海洋地球化学观测数据提出了anammox这一生物地球化学过程存在的可能性,在20世纪70年代,有科学家根据化学反应热动力学原理,预测anammox细菌的存在,但在随后的十几年时间,该类微生物却一直没有被发现.作为低氧和缺氧环境中广泛分布的一类重要的氮循环细菌,是什么因素阻碍了其发现?又是什么因素最终促成了它的发现?对这些问题的分析给科学研究带来怎样的启示?本文从海洋anammox细菌生理生态学基础和科学研究规律出发,对上述问题进行了分析阐释.