基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改善当前电气故障诊断的效果,提出一种基于小波消噪和人工蜂群优化最小二乘支持向量机的电气故障诊断方法(WA-ABC-LSSVM)。首先收集电气状态信息,并采用小波变换对其进行去噪处理,消除噪声的干扰,然后提取电气状态中的特征,并且进行归一化处理,最后采用训练样本对最小二乘支持向量机进行训练,采用人工蜂群算法优化最小二乘支持向量机参数,建立电气故障诊断分类器。仿真实验结果表明,本文方法可以较好描述电气系统的工作状态,诊断性能要明显优于其它的电气故障诊断方法。
推荐文章
基于粒子群优化LSSVM的模拟电路故障诊断方法
模拟电路
故障诊断
粒子群优化
最小二乘支持向量机
基于DE-LSSVM的滚动轴承故障诊断
集合经验模式分解
能量熵
差分进化算法
最小二乘支持向量机
故障诊断
基于神经网络的电气设备故障诊断
电气设备
故障诊断
神经网络
学习算法
经验模态分解结合包络谱LSSVM的滚动轴承故障诊断
滚动轴承
故障诊断
经验模态分解
包络谱分析
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于WA-ABC-LSSVM的电气故障诊断
来源期刊 电子器件 学科 工学
关键词 电气系统 故障分类 小波去噪 状态特征 故障分类器
年,卷(期) 2016,(3) 所属期刊栏目 电子电路设计分析及应用
研究方向 页码范围 728-731
页数 4页 分类号 TP181
字数 3066字 语种 中文
DOI 10.3969/j.issn.1005-9490.2016.03.044
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 史增芳 河南工业职业技术学院机电工程学院 37 109 6.0 8.0
2 姜岩蕾 河南工业职业技术学院机电工程学院 24 70 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (83)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (10)
二级引证文献  (3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(6)
  • 参考文献(2)
  • 二级参考文献(4)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
电气系统
故障分类
小波去噪
状态特征
故障分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子器件
双月刊
1005-9490
32-1416/TN
大16开
南京市四牌楼2号
1978
chi
出版文献量(篇)
5460
总下载数(次)
21
总被引数(次)
27643
论文1v1指导