基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The paper promotes the implementation of a neural network approach to improve one of the most transcendent traffic conditions: the mobility of the cars in any particular junction. Neural networks have proven to be an effective paradigm of modern computing, providing extensive benefits in a wide range of applications. In this sense, the paper uses a BPNN (backpropagation neural network) model. The three input nodes are related to: n1: the amount of cars in the road; n2: the green light interval; and n3:the distance (taking into account the quantity of cars) between the first car in the intersection and the last car in the longest line in front of it. In particular, the paper promotes that each traffic light signal will be capable of offering a new green light interval according to the requirement and constrains of the vitality, ensuring a vehicular mobility level greater than 65%. To assess this idea, the paper presents two experiments confronting the real world data versus experimental results. For example, in the first experiment, the BPNN improves the performance of the real data about vehicular mobility in almost 30%. Finally, some conclusions and future work are presented.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Determination of Hf-Sr-Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fu
Certified reference material
Flux-free fusion
Hf-Sr-Nd isotopic ratio
Procedural blank
Rapid acid digestion
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improving Traffic Conditions by Using Neural Networks
来源期刊 计算机技术与应用:英文版 学科 工学
关键词 TRAFFIC conditions NEURAL networks INTELLIGENT transport systems vehicular MOBILITY
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 46-56
页数 11页 分类号 TP
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TRAFFIC
conditions
NEURAL
networks
INTELLIGENT
transport
systems
vehicular
MOBILITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与应用:英文版
月刊
1934-7332
中国联络处:武汉洪山区卓刀泉北路金桥花园
出版文献量(篇)
364
总下载数(次)
0
总被引数(次)
0
论文1v1指导