基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Much attention has been paid to relevant feedback in intelligent computation for social computing, especially in content-based image retrieval which based on WeChat platform for the medical auxiliary. It has a good effect on reducing the semantic gap between high semantics and low semantics of images. There are many kinds of support vector machines (SVM) based relevance feedback methods in image retrieval, but all of them may encounter some problems, such as a small size of sample, an asymmetric positive sample and negative sample as well as a long feedback cycle. To deal with these problems, an improved asymmetric bagging (IAB) relevance feedback algorithm is proposed. Furthermore, we apply a new fuzzy support machine (FSVM) to cooperate with IAB. To solve the over-fitting and real-time problems, we use modified local binary patterns (MLBP) as image features. Finally, experimental results demonstrate that our method performs other methods in terms of improving retrieval precision as well as retrieval efficiency.
推荐文章
集成分类对比:Bagging NB & Boosting NB
分类算法
Bagging
Boosting
朴素贝叶斯
Guizhou Province, China: the birthplace of modern Medical Geology
Coal
Fluorosis
Arsenic poisoning
Selenosis
Health impacts
Environmental health
基于属性权重的Bagging回归算法研究
支持向量机
属性权重
集成学习
主成份分析
回归算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Improved Asymmetric Bagging Relevance Feedback Strategy for Medical Image Retrieval
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Social computing CONTENT-BASED image RETRIEVAL Fuzzy support vector machine RELEVANCE feedback IMPROVED ASYMMETRIC BAGGING
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 45-47
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Social
computing
CONTENT-BASED
image
RETRIEVAL
Fuzzy
support
vector
machine
RELEVANCE
feedback
IMPROVED
ASYMMETRIC
BAGGING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导