作者:
原文服务方: 现代电子技术       
摘要:
提出一种新的回归算法——基于属性权重的Bagging回归算法。首先使用支持向量机回归或主成分分析方法对样本数据的属性赋以一定的权值,以表明该属性在回归过程中的贡献大小;再根据不同属性的权重大小构建训练使用的多个属性子集。在构建这些属性子集的过程中,按照不同属性权重在总权重中所占比重为概率进行,使得对回归贡献大的属性有更大的可能被选入属性子集当中参与训练;最后,对这些属性子集进行训练,生成相应的多个回归子模型,这些子模型的集合就是通过基于属性权重的Bagging回归算法训练得到的最终模型。
推荐文章
基于属性权重的局部离群点挖掘算法研究
高维
离群点检测
高维局部偏离系数
加权属性距离
高维平均偏离系数
基于属性权重最优化的 k-means 聚类算法
聚类算法
属性权重
数据挖掘
目标函数
基于项目属性与数据权重的协同过滤推荐算法
推荐系统
协同过滤
项目属性
相似性
数据权重
基于多权重属性测度和信息融合的辐射源识别算法
辐射源识别
层次分析
熵值
粗糙集
信息融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于属性权重的Bagging回归算法研究
来源期刊 现代电子技术 学科
关键词 支持向量机 属性权重 集成学习 主成份分析 回归算法
年,卷(期) 2017,(1) 所属期刊栏目 测试?测量?自动化
研究方向 页码范围 95-98,103
页数 5页 分类号 TN911-34|TM417
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2017.01.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟小燕 内蒙古师范大学青年政治学院信息工程系 29 18 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (101)
共引文献  (223)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(7)
  • 参考文献(1)
  • 二级参考文献(6)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(10)
  • 参考文献(0)
  • 二级参考文献(10)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(14)
  • 参考文献(0)
  • 二级参考文献(14)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
属性权重
集成学习
主成份分析
回归算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导