基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Identifying negation scopes in a text is an important subtask of information extraction, that can benefit other natural language processing tasks, like relation extraction, question answering and sentiment analysis. And serves the task of social media text understanding. The task of negation scope detection can be regarded as a token-level sequence labeling problem. In this paper, we propose different models based on recurrent neural networks (RNNs) and word embedding that can be successfully applied to such tasks without any task-specific feature engineering efforts. Our experimental results show that RNNs, without using any hand-crafted features, outperform feature-rich CRF-based model.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Diffusion in garnet: a review
High temperature and high pressure
Diffusion
Garnet
Point defects
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Negation Scope Detection with Recurrent Neural Networks Models in Review Texts
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 NEGATION SCOPE DETECTION Natural language processing RECURRENT NEURAL networks
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 127-130
页数 4页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NEGATION
SCOPE
DETECTION
Natural
language
processing
RECURRENT
NEURAL
networks
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导