基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Aimed at the problems of small gradient, low learning rate, slow convergence error when the DBN using back-propagation process to fix the network connection weight and bias, proposing a new algorithm that combines with multi-innovation theory to improve standard DBN algorithm, that is the multi-innovation DBN(MI-DBN). It sets up a new model of back-propagation process in DBN algorithm, making the use of single innovation in previous algorithm extend to the use of innovation of the preceding multiple period, thus increasing convergence rate of error largely. To study the application of the algorithm in the social computing, and recognize the meaningful information about the handwritten numbers in social networking images. This paper compares MI-DBN algorithm with other representative classifiers through experiments. The result shows that MI-DBN algorithm, comparing with other representative classifiers, has a faster convergence rate and a smaller error for MNIST dataset recognition. And handwritten numbers on the image also have a precise degree of recognition.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Research of the DBN Algorithm Based on Multi-innovation Theory and Application of Social Computing
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 DBN ALGORITHM CONVERGENCE error Multi-innovation THEORY MI-DBN ALGORITHM Social COMPUTING
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 147-149
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DBN
ALGORITHM
CONVERGENCE
error
Multi-innovation
THEORY
MI-DBN
ALGORITHM
Social
COMPUTING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导