针对不平衡分类问题,提出了逻辑判别式算法.该算法使用拟牛顿法迭代求解模型参数,考虑模型的准确率和召回率,构造了新损失函数(Likelihood Estimation and Recall Metric,LERM);设计了用于不平衡类问题的逻辑判别式算法(Logistic Discrimination Algorithms for Imbalance,LDAI).16个数据集上的实验结果表明,与传统的逻辑判别式、基于过采样和欠采样的逻辑判别式相比,LDAI模型在召回率、f-measure、g-mean等指标上都表现出明显优势.