基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper realizes a sign language-to-speech conversion system to solve the communication problem between healthy people and speech disorders. 30 kinds of different static sign languages are firstly recognized by combining the support vector machine (SVM) with a restricted Boltzmann machine (RBM) based regulation and a feedback fine-tuning of the deep model. The text of sign language is then obtained from the recognition results. A context-dependent label is generated from the recognized text of sign language by a text analyzer. Meanwhile,a hiddenMarkov model (HMM) basedMandarin-Tibetan bilingual speech synthesis system is developed by using speaker adaptive training.The Mandarin speech or Tibetan speech is then naturally synthesized by using context-dependent label generated from the recognized sign language. Tests show that the static sign language recognition rate of the designed system achieves 93.6%. Subjective evaluation demonstrates that synthesized speech can get 4.0 of the mean opinion score (MOS).
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于Deep Speech的语音识别系统的实现与改进
语音识别
深度学习
循环神经网络
CTC
门限循环单元
随机梯度下降
语言模型
Geochemical tracing and modeling of surface and deep water-rock interactions in elementary granitic
Weathering
Water pathways
U activity ratios
Sr isotope ratios
Anthropogenic gases (CFC,SF6)
CZO
基于Speech SDK的语音应用程序实现
应用程序
文本语音转换
语音识别
Microsoft Speech SDK
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Towards Realizing Sign Language-to-Speech Conversion by Combining Deep Learning and Statistical Parametric Speech Synthesis
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Deep learning Support vector machine Static SIGN language recognition Context-dependent LABEL Hidden Markov model Mandarin-Tibetan BILINGUAL SPEECH synthesis
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 176-178
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Deep
learning
Support
vector
machine
Static
SIGN
language
recognition
Context-dependent
LABEL
Hidden
Markov
model
Mandarin-Tibetan
BILINGUAL
SPEECH
synthesis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导