原文服务方: 中国机械工程       
摘要:
针对在小样本数据情况下训练的连铸漏钢预报模型难以获得较高预报准确率的问题,提出了一种基于主动学习遗传算法支持向量机(GA-SVM)分类器的漏钢预报算法。该算法首先将采集到的连铸结晶器坯壳温度数据进行预处理,并将有效数据进行标注;然后利用标注后的小样本数据和遗传算法来优化SVM的经验参数,训练并得到支持向量机模型;最后利用某钢厂采集到的连铸结晶器坯壳温度数据进行测试。测试结果表明,在利用小样本数据进行训练的情况下,所提出的基于主动学习 GA-SVM分类器的连铸漏钢预报算法具有较高的漏钢预报率(预报精度)和100%的漏钢报出率,验证了所提漏钢预报算法的有效性。
推荐文章
板坯连铸漏钢预报系统的应用
漏钢预报
热电偶
粘结漏钢
准确率
运用GA-SVM模型的砂石骨料分类方法
人工砂石
骨料分类
破碎工序
遗传算法
支持向量机
耐候钢异型坯连铸粘结漏钢原因
耐候钢
异型坯连铸
粘接漏钢
基于SVM主动学习技术的 PU 文本分类
支持向量机
主动学习
PU
文本分类
Rocchio
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主动学习GA-SVM分类器的连铸漏钢预报
来源期刊 中国机械工程 学科
关键词 漏钢预报 GA-SVM 主动学习 小样本数据
年,卷(期) 2016,(12) 所属期刊栏目 信息技术
研究方向 页码范围 1609-1614
页数 6页 分类号 TF345
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2016.12.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 方一鸣 燕山大学工业计算机控制工程河北省重点实验室 115 1254 20.0 28.0
3 刘乐 燕山大学工业计算机控制工程河北省重点实验室 21 185 8.0 13.0
6 胡春洋 燕山大学工业计算机控制工程河北省重点实验室 1 5 1.0 1.0
7 张兴明 清华大学天津高端装备研究院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (78)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (36)
二级引证文献  (10)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(3)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(8)
  • 引证文献(3)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
漏钢预报
GA-SVM
主动学习
小样本数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导