原文服务方: 河南科学       
摘要:
传统的径向基函数(RBF)神经网络在边坡稳定性预测中已经得到了广泛的应用,但由于其在预测中易陷入局部最优且参数选取不当会对收敛性产生影响.故引入粒子群算法(PSO)对RBF神经网络进行优化,利用其全局搜索能力对RBF神经网络的隐含层基函数中心值、宽度以及隐含层至输出层的连接权值进行参数寻优,建立了基于PSO-RBF的边坡安全系数预测模型.以114组边坡数据为训练样本,8组边坡数据为测试样本,结果显示基于PSO-RBF网络预测结果的最大误差为7.36%、最小为0.18%、平均误差为3.77%,而基于单纯RBF网络的预测结果的相应误差分析别为11.04%、1.34%、6.19%.可以看出,前者的预测结果明显优于后者,表明经粒子群算法优化后的RBF在预测精度上有了明显的提高.
推荐文章
边坡安全系数的多解性讨论
边坡
稳定
安全系数
极限平衡法
自适应变系数PSO-RBF算法及其在预测工程的应用
非线性预测
RBF神经网络
自适应变系数粒子群算法
煤气量预测
计算边坡安全系数的坡向离心法
坡向离心法
边坡稳定分析
安全系数
敏感性分析
求解边坡矢量和安全系数的条分法
边坡稳定性
矢量和安全系数
条分法
条间力函数
非线性规划
广义简约梯度
电子表格
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-RBF的边坡安全系数预测
来源期刊 河南科学 学科
关键词 粒子群算法 RBF神经网络 边坡安全系数 预测
年,卷(期) 2016,(5) 所属期刊栏目 建筑科学与交通科学
研究方向 页码范围 747-751
页数 5页 分类号 TU457
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 魏继红 河海大学地球科学与工程学院 40 388 11.0 19.0
2 胡昊 河海大学地球科学与工程学院 3 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (417)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (13)
二级引证文献  (4)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(1)
  • 二级参考文献(2)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
粒子群算法
RBF神经网络
边坡安全系数
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科学
月刊
1004-3918
41-1084/N
大16开
1982-01-01
chi
出版文献量(篇)
7317
总下载数(次)
0
总被引数(次)
26314
论文1v1指导