时间同步技术在分布式系统中应用广泛,时钟校准是时间同步的前提。针对时间校准过程中所需的时间信号可能出现传递失效等问题,在时间校准过程中引入钟差预报技术。同时为提高钟差预报模型的预报精度,提出一种GM?BP神经网络的钟差预报组合模型,首先利用已测钟差数据建立多个不同维数的GM(1,1)钟差预报模型,并对某时段的钟差进行预报,发挥多个不同GM(1,1)模型的优点;然后利用训练好的 BP 神经网络对预报结果进行非线性组合,最终的预报结果为BP神经网络非线性组合后的钟差。利用衰减器模拟对流层散射信道,设计对流层散射单向时钟校准试验,利用试验过程中实测的钟差数据进行组合模型精度验证。仿真结果表明,组合模型较单一预报模型,预报误差更加平稳,精度上提高53%~95%。