基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电能质量识别领域中,采用随机参数的支持向量机(SVM)分类器识别随机暂态扰动信号准确率低、优化耗时长等问题,提出一种基于遗传算法(GA)优化SVM识别电能质量暂态扰动(PQD)的新方法(GA-SVM).首先,仿真生成具有随机噪声水平和扰动参数的9种PQD信号;接着,通过S变换,提取出6种信号特征构成输入特征向量,用于训练SVM分类器;再采用GA对SVM进行参数寻优,进而获得优化的GA-SVM分类器;最后,采用GA-SVM识别PQD信号.仿真对比试验表明,新方法能准确识别不同噪声环境下的9种PQD信号,分类准确率及优化所需时间均优于PSO优化SVM方法(PSO-SVM).
推荐文章
基于改进支持向量机的电能质量扰动分类
电能质量
扰动识别
最小二乘支持向量机
小渡变换
自适应遗传算法优化支持向量机的过电压识别
过电压识别
支持向量机
输电线路
遗传算法
小波包和最小二乘支持向量机的电能质量扰动识别
电能质量
扰动识别
特征向量
分类器
支持向量机
最小二乘
基于改进遗传算法的支持向量机微信垃圾文章识别
支持向量机
遗传算法
特征选择
参数优化
垃圾文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法优化支持向量机的电能质量暂态扰动识别新方法
来源期刊 水电能源科学 学科 工学
关键词 电能质量 随机噪声 S变换 GA SVM 参数优化 扰动识别
年,卷(期) 2016,(11) 所属期刊栏目 电气工程
研究方向 页码范围 200-203
页数 4页 分类号 TM714
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (276)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电能质量
随机噪声
S变换
GA
SVM
参数优化
扰动识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导