目前中国西北干旱、半干旱地区的土壤盐渍化情况日益趋于严重,动态、快速而精确地监测与评价土壤盐渍化显得尤为重要。微波遥感所具有的优点使其成为探测土壤盐分分布的新兴而有潜力的方法。快速获取大范围地表土壤盐渍化的空间分布是一个迫切急需解决的科学难题。该文目的是试验与评价 C 波段 RADARSAT-2 SAR(synthetic aperture radar)数据反演土壤盐渍化的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,基于 SAR 后向散射系数和土壤盐分实测值,利用多元线性回归(multiple linear regress,MLR)、地理加权回归(geographically weighted regression,GWR)和 BP 人工神经网络(back propagation artificial neural networks,BP ANN)方法建立土壤含盐量的定量反演模型,重点构建了8∶140∶1结构的3层 BP ANN 模型,经模型验证发现 MLR、GWR 模型均偏向于弱相关,其标准误差 SE 分别为0.55、0.47 mg/g,而 ANN(BP)模型的内部、外部检验标准误差 SE 分别为0.24、0.33 mg/g,优于前2种模型,其反演的盐渍化面积占比65.4%,与地面验证结果基本一致。该文建立的考虑土壤水分影响、组合雷达后向散射系数反演土壤盐分的人工智能模型,无需复杂的介电常数模型,能够在一定程度上满足土壤盐渍化监测的需要,可促进微波遥感在土壤盐渍化监测中的开拓应用。