基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人工蜂群算法易陷入局部最优、收敛速度慢的问题,在算法中引入量子策略,设计蜂群系统中单个蜜蜂的势阱模型,模拟蜂群量子行为,提出一种具有量子行为的人工蜂群算法.改进的算法在算法前期保持了原算法中蜂群的多样性,后期使用量子策略增强了原算法的开采能力,提高了算法的收敛速度.最后,用标准测试函数进行测试.实验结果表明,改进的人工蜂群算法在保持原算法有效性的同时,大幅提高了算法的收敛速度和精度.
推荐文章
改进的人工蜂群算法
人工蜂群算法
差分进化算法
种群初始化
搜索方程
平衡搜索的改进人工蜂群算法
人工蜂群算法
局部搜索
群智能算法
适应度评价
搜索策略
一种改进的人工蜂群算法研究
人工蜂群算法
算法改进
数据分析
更新维度
领域搜索
仿真实验
人工蜂群算法研究综述
人工蜂群算法
群智能
多目标优化
约束优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 人工蜂群算法改进
来源期刊 软件导刊 学科 工学
关键词 人工蜂群算法 群智能优化算法 量子策略 标准测试函数
年,卷(期) 2016,(11) 所属期刊栏目 算法与语言
研究方向 页码范围 65-67
页数 3页 分类号 TP312
字数 2592字 语种 中文
DOI 10.11907/rjdk.161955
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁学明 上海理工大学光电信息与计算机工程学院 35 152 7.0 10.0
2 敖媛 上海理工大学光电信息与计算机工程学院 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (35)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1926(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工蜂群算法
群智能优化算法
量子策略
标准测试函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导