基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图聚类算法是数据挖掘和复杂网络研究中的一个关键环节。基于密度、层次划分的方法已经被广泛应用于流行病学、新陈代谢和科学引文写作中。尽管上述的聚类方法适用于复杂网络的社区发现,但精度受到限制,其中一个最大的挑战是重叠社区的生成。为填补这一缺口,提出了一种利用图熵搜索局部最优的聚类方法。与传统的基于密度的种子生长式方法不同,在每一次迭代中,引入图熵来衡量图结构的模块度,并为种子的选择提供了随机选择、基于节点的度和基于节点的聚类系数3种方案。经过自下而上迭代的聚类,引入准确率和召回率等评价指标评估聚类结果的精确度,证明了算法的有效性。
推荐文章
层次聚类社区发现算法的研究
社区发现
复杂网络
矩阵谱分析
层次聚类
边图思想
极大团方法
采用模糊层次聚类的社会网络重叠社区检测算法
社会网络
相似度
模糊层次聚类
重叠社区检测
基于连边相似度的重叠社区发现算法研究
社区发现
重叠社区
相似度
划分密度
基于LeaderRank的多标签传播重叠社区发现算法
重叠社区发现
多标签传播
COPRA
LeaderRank
节点重要性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图熵聚类的重叠社区发现算法
来源期刊 无线互联科技 学科
关键词 图聚类算法 图熵 复杂网络 重叠社区
年,卷(期) 2016,(13) 所属期刊栏目 实验研究
研究方向 页码范围 98-101,116
页数 5页 分类号
字数 3505字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 施欢欢 南京财经大学信息工程学院 4 3 1.0 1.0
2 印安涛 南京财经大学信息工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (4)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图聚类算法
图熵
复杂网络
重叠社区
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线互联科技
半月刊
1672-6944
32-1675/TN
16开
江苏省南京市
2004
chi
出版文献量(篇)
18145
总下载数(次)
78
总被引数(次)
27320
论文1v1指导