基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Many systems of handwritten digit recognition built using the complete set of features in order to enhance the accuracy. However, these systems lagged in terms of time and memory. These two issues are very critical issues especially for real time applications. Therefore, using Feature Selection (FS) with suitable machine learning technique for digit recognition contributes to facilitate solving the issues of time and memory by minimizing the number of features used to train the model. This paper examines various FS methods with several classification techniques using MNIST dataset. In addition, models of different algorithms (i.e. linear, non-linear, ensemble, and deep learning) are implemented and compared in order to study their suitability for digit recognition. The objective of this study is to identify a subset of relevant features that provides at least the same accuracy as the complete set of features in addition to reducing the required time, computational complexity, and required storage for digit recognition. The experimental results proved that 60% of the complete set of features reduces the training time up to third of the required time using the complete set of features. Moreover, the classifiers trained using the proposed subset achieve the same accuracy as the classifiers trained using the complete set of features.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Minimal Subset of Features Using Feature Selection for Handwritten Digit Recognition
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 DIGIT RECOGNITION REAL Time FEATURE Selection Machine Learning Classification MNIST
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 55-68
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DIGIT
RECOGNITION
REAL
Time
FEATURE
Selection
Machine
Learning
Classification
MNIST
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导