基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Renewable energy sources are considered much in energy fields because of the contemporary energy calamities. Among the important alternatives being considered, wind energy is a durable competitor because of its dependability due to the development of the innovations, comparative cost effectiveness and great framework. To yield wind energy more proficiently, the structure of wind turbines has turned out to be substantially bigger,creating conservation and renovation works troublesome. Due to various ecological conditions, wind turbine blades are subjected to vibration and it leads to failure. If the failure is not diagnosed early, it will lead to catastrophic damage to the framework. In order to increase safety observations, to reduce down time, to bring down the recurrence of unexpected breakdowns and related enormous maintenance, logistic expenditures and to contribute steady power generation, the wind turbine blade must be monitored now and then to assure that they are in good condition. In this paper, a three bladed wind turbine was preferred and using vibration source, the condition of a wind turbine blade is examined.The faults like blade crack, erosion, hub-blade loose connection, pitch angle twist and blade bend faults were considered and these faults are classified using Bayes Net (BN),Discriminative Multinomial Na?ve Bayes (DMNB), Na?ve Bayes (NB), Simple Na?ve Bayes (SNB), and Updateable Na?ve Bayes (UNB) classifiers. These classifiers are compared and better classifier is suggested for condition monitoring of wind turbine blades.
推荐文章
Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustri
Trace elements
Occurrence mode
Paleoenvironment
Zhangjiatan oil shale
Yanchang Formation
Ordos Basin
使用World Wind Java技术的无人直升机地面站
无人直升机
地面监控站
World Wind Java技术
三维可视化
模糊Bayes决策模型及其应用
Bayes决策
模糊先验分布
模糊化
模糊后验分布
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals
来源期刊 结构耐久性与健康监测(英文) 学科 医学
关键词 Condition monitoring FAULT diagnosis WIND TURBINE BLADE machine learning STATISTICAL features vibration SIGNALS
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 63-79
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Condition
monitoring
FAULT
diagnosis
WIND
TURBINE
BLADE
machine
learning
STATISTICAL
features
vibration
SIGNALS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
结构耐久性与健康监测(英文)
季刊
1930-2983
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
39
总下载数(次)
0
总被引数(次)
0
论文1v1指导