X-ray-computed tomography (CT) has become one of the most important investigation procedures worldwide. The study aimed to assess image quality parameters, mainly noise, and radiation doses during abdominal examination. This study examined the diagnostic parameters (kilo voltage, tube current time product, slice thickness, and pitch) and their effects on image quality as well as the radiation doses received from computed tomography scanners using phantom. The study carried out in four CT centers in Sudan. The study applied prospective and experimental methods. The study demonstrated there was a linear correlation between diagnostic parameters and image noise. The reduction in milli-ampere second and peak kilo voltage increased the image noise. Moreover increasing the pitch led to an increase in the image noise, whereas increasing the slice thickness, reduced the image noise. There was also a linear relationship between kilo voltage and radiation dose at Elnileen diagnostic center characterized by an increase kilo voltages values which led to an increase in the radiation dose by 92% and a reduction in the image noise by 83%. However, at Antalya medical center, increasing in kilo voltage values led to an increase in the radiation dose by 35% and a reduction in the image noise by 26%. Also increasing in milli-ampere second values led to an increase in the radiation dose by 49% and a reduction in the image noise by 46% in a phantom compared with an increase in radiation dose by 82% and a reduction in the image noise by 51% in patients .The study found that an optimal protocol for adult abdominal scan at Antalya medical center was 4.22HU for image noise and 10.45 mGy for radiation dose when using 120 kVp, 300 mAs, 5 mm slice thickness and pitch of 0.8. At Elnileen diagnostic center, however, the optimal protocol was 5.4 HU for image noise and 5.4 mGy for radiation dose using 130 kVp, 50 mAs, 10 mm slice thickness and pitch of 2. In addition, the quality control tests for image quality parameters carried out at the two