作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this article I conduct a short review of the proofs of the area inside a circle. These include intuitive as well as rigorous analytic proofs. This discussion is important not just from mathematical view point but also because pedagogically the calculus books still use circular reasoning today to prove the area inside a circle (also that of an ellipse) on this important historical topic, first illustrated by Archimedes. I offer an innovative approach through the introduction of a theorem, which will lead to proving the area inside a circle avoiding circular argumentation.
推荐文章
Geochemistry and petrogenetic evolution of metasedimentary rocks in Bunu Area, part of Kabba-Lokoja-
Geochemical studies
Metasedimentary rocks
Geodynamic activities
Protolith
Passive continental margins
Magnetic Influences of Cement Dust on Soil in Industrial Area and Its Environmental Implications
Cement dust
Soil
Magnetic property
Environmental significance
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Area inside a Circle: Intuitive and Rigorous Proofs
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Area Circle ELLIPSE CIRCULAR REASONING Intuitive PROOF Rigorous PROOF
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 102-108
页数 7页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Area
Circle
ELLIPSE
CIRCULAR
REASONING
Intuitive
PROOF
Rigorous
PROOF
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导