基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, a Gaussian mixture model (GMM) based classifier is described to tell whether precipitation events will happen on a certain day at a certain time from historical meteorological data. The classifier deals with a two-class classification problem where one class represents precipitation events and the other represents non-precipitation events. The concept of ambiguity is introduced to represent cases where weather conditions between the two classes like drizzles, intermittent or overcast are more likely to happen. Six groups of experiments are carried out to evaluate the performance of the classifier using different configurations based on the observation data released by Shanghai Baoshan weather station. Specifically, a typical classification performance of about 75% accuracy, 30% precision and 80% recall is achieved for prediction tasks with a time span of 12 hours.
推荐文章
An experimental study on metal precipitation driven by fluid mixing: implications for genesis of car
Metal precipitation
Fluid mixing
Sulfur species
MVT lead–zinc ore deposits
Carbonate-hosted
lead–zinc deposits
Distribution and assessment of hydrogeochemical processes of F-rich groundwater using PCA model: a c
Fluoride
Groundwater chemistry
PCA model
Hydrogeochemical processes
Yuncheng Basin
正交 Gaussian-Hermite 矩的应用
正交Gaussian-Hermite矩
最佳参数估计
运动目标检测
极大似然估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Predicting Precipitation Events Using Gaussian Mixture Model
来源期刊 数据分析和信息处理(英文) 学科 医学
关键词 GAUSSIAN MIXTURE Model CLASSIFICATION EM Algorithm PRECIPITATION EVENT
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 131-139
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GAUSSIAN
MIXTURE
Model
CLASSIFICATION
EM
Algorithm
PRECIPITATION
EVENT
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导