基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the rapid growth of spatial data,POI(Point of Interest)is becoming ever more intensive,and the text description of each spatial point is also gradually increasing.The traditional query method can only address the problem that the text description is less and single keyword query.In view of this situation,the paper proposes an approximate matching algorithm to support spatial multi-keyword.The fuzzy matching algorithm is integrated into this algorithm,which not only supports multiple POI queries,but also supports fault tolerance of the query keywords.The simulation results demonstrate that the proposed algorithm can improve the accuracy and efficiency of query.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Research on Fuzzy Matching Query Algorithm Based on Spatial Multi-keyword
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 SPATIAL data Multi-keyword search APPROXIMATE QUERY algorithm RB-tree
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 31-32
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SPATIAL
data
Multi-keyword
search
APPROXIMATE
QUERY
algorithm
RB-tree
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导