基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Detecting occluded objects is a crucial exercise in many spheres of application. For example in Strafing (attacking ground targets from low flying aircrafts) or vehicular tracking, continuous detection of the object even when it is occluded by another object is essential. Failing to track the occluded object may result in completely losing its location or another object to be mistakenly tracked. Both of which will result in disastrous consequences. There are various methods to handle occlusions. In a previous research which was done by the author, a novel noise filtration mechanism based on the corrector equation of the Kalman filter which can be used with greater accuracy to handle lengthy occlusions was made. In this presentation, a further analysis of the error of the algorithm will be presented. The algorithm when compared with existing algorithms under the same test conditions gives promising results.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Error Analysis Based on the Kalman Gain in a Position Predicting Algorithm of an Occluded Object
来源期刊 信号与信息处理(英文) 学科 医学
关键词 KALMAN Filter Computer VISION Based TRACKING OCCLUSION
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 161-177
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
KALMAN
Filter
Computer
VISION
Based
TRACKING
OCCLUSION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
论文1v1指导