基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The recently proposed data-driven pole placement method is able to make use of measurement data to simultaneously identify a state space model and derive pole placement state feedback gain. It can achieve this precisely for systems that are linear time-invariant and for which noiseless measurement datasets are available. However, for nonlinear systems, and/or when the only noisy measurement datasets available contain noise, this approach is unable to yield satisfactory results. In this study, we investigated the effect on data-driven pole placement performance of introducing a prefilter to reduce the noise present in datasets. Using numerical simulations of a self-balancing robot, we demonstrated the important role that prefiltering can play in reducing the interference caused by noise.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Improvement on Data-Driven Pole Placement for State Feedback Control and Model Identification
来源期刊 智能控制与自动化(英文) 学科 工学
关键词 DATA-DRIVEN Control STATE FEEDBACK POLE PLACEMENT Nonlinear Systems
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 139-153
页数 15页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DATA-DRIVEN
Control
STATE
FEEDBACK
POLE
PLACEMENT
Nonlinear
Systems
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能控制与自动化(英文)
季刊
2153-0653
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
250
总下载数(次)
0
总被引数(次)
0
论文1v1指导