基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The objective of this study is to develop an effective approach for product quality prediction in Computer Numerical Control turning of cantilever bars. A systematic predictive modelling procedure based on experimental investigations, neural network modelling and various statistical analysis tools is designed to produce the most accurate, practical and cost-effective prediction model. The modeling procedure begins by exploring the relationships between cutting parameters known to have an influence on quality characteristics of machined parts, such as dimensional errors, form errors and surface roughness, as well as their sensitivity to the process conditions. Based on these explorations and using numerous statistical tools, the most relevant variables to include in the prediction model are identified and fused using several artificial neural network architectures. An application on CNC turning of cantilever bars demonstrates that the proposed modeling procedure can be effectively and advantageously applied to quality characteristics prediction due to its simplicity, accuracy and efficiency. The experimental validation reveals that the resulting prediction model can correctly predict the quality characteristics of machined parts under variable machining conditions.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
Adsorption characteristics of copper ion on nanoporous silica
Nanoporous silica
Copper ion
Adsorption
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Artificial Neural Networks Based Integrated Predictive Modelling of Quality Characteristics in CNC Turning of Cantilever Bars
来源期刊 力学国际期刊(英文) 学科 医学
关键词 MACHINING CNC TURNING CANTILEVER Bar Product Quality DOE PREDICTIVE Modelling Artificial Neural Networks
年,卷(期) 2017,(5) 所属期刊栏目
研究方向 页码范围 143-159
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MACHINING
CNC
TURNING
CANTILEVER
Bar
Product
Quality
DOE
PREDICTIVE
Modelling
Artificial
Neural
Networks
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
力学国际期刊(英文)
月刊
2160-049X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
280
总下载数(次)
0
总被引数(次)
0
论文1v1指导