基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电力客户投诉信息进行短文本分类,介绍了K近邻(KNN)算法和中心向量算法,并针对KNN分类算法的某些缺陷作了相关改进,主要加入了中心向量法的思想.对改良后的KNN算法、中心向量算法和传统的KNN算法进行了实验比较,结果发现,相比传统的KNN算法,改良后的新方案能更好地运用在电力客户投诉信息的分类操作上.
推荐文章
面向审计领域的短文本分类技术研究
审计问题分类
审计领域
信息增益
SVM决策树
短文本分类
审计报告
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
面向中文短文本情感分析的改进特征选择算法
特征选择
情感分析
词频逆文本频率指数
信息增益
中文短文本
基于自身特征扩展的短文本分类方法
短文本
稀疏
信号弱
扩展
离散度
相关度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向电力客户投诉信息的短文本分类算法的改进技术
来源期刊 上海电力学院学报 学科 工学
关键词 文本分类 中心向量法 K近邻算法 相似度
年,卷(期) 2017,(6) 所属期刊栏目 计算机技术
研究方向 页码范围 597-600
页数 4页 分类号 TN919.3|TP271.5
字数 2723字 语种 中文
DOI 10.3969/j.issn.1006-4729.2017.06.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 雷景生 上海电力学院计算机科学与技术学院 32 203 7.0 13.0
2 吴艾薇 上海电力学院计算机科学与技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (117)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (12)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
中心向量法
K近邻算法
相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海电力大学学报
双月刊
2096-8299
31-2175/TM
大16开
上海市平凉路2103号
1980
chi
出版文献量(篇)
2781
总下载数(次)
10
论文1v1指导