基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
KNN短文本分类算法通过扩充短文本内容提高短文本分类准确率,却导致短文本分类效率降低.鉴于此,通过卡方统计方法提取训练空间中各类别的类别特征,根据训练空间中各类别样本与该类别特征的相似情况,对已有的训练空间进行拆分细化,将训练空间中的每个类别细化为多个包含部分样本的训练子集;然后针对测试文本,从细化后的训练空间中提取与测试文本相似度较高的类别特征所对应的训练子集的样本来重构该测试文本的训练集合,减少KNN短文本分类算法比较文本对数,从而提高KNN短文本分类算法的效率.实验表明,与基于知网语义的KNN短文本分类算法相比,本算法提高KNN短文本分类算法效率近50%,分类的准确性也有一定的提升.
推荐文章
KNN文本分类算法研究
文本分类
KNN
向量空间模型
基于聚类降维的改进KNN文本分类
特征降维
聚类
文本分类
K平均
K近邻
基于自身特征扩展的短文本分类方法
短文本
稀疏
信号弱
扩展
离散度
相关度
一种改进的KNN Web文本分类方法
Web文本分类
K最近邻
快速分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于类别特征改进的KNN短文本分类算法
来源期刊 计算机工程与科学 学科 工学
关键词 短文本分类 KNN分类 类别特征 hownet 效率
年,卷(期) 2018,(1) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 148-154
页数 7页 分类号 TP391.1
字数 5792字 语种 中文
DOI 10.3969/j.issn.1007-130X.2018.01.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄贤英 重庆理工大学计算机科学与工程学院 95 349 9.0 14.0
2 刘英涛 重庆理工大学计算机科学与工程学院 7 94 6.0 7.0
3 熊李媛 重庆理工大学计算机科学与工程学院 4 76 4.0 4.0
4 李沁东 重庆理工大学计算机科学与工程学院 4 62 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (97)
共引文献  (199)
参考文献  (14)
节点文献
引证文献  (12)
同被引文献  (12)
二级引证文献  (5)
1967(2)
  • 参考文献(1)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(14)
  • 参考文献(2)
  • 二级参考文献(12)
2013(20)
  • 参考文献(1)
  • 二级参考文献(19)
2014(6)
  • 参考文献(4)
  • 二级参考文献(2)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(7)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(7)
  • 二级引证文献(0)
2018(7)
  • 引证文献(7)
  • 二级引证文献(0)
2019(6)
  • 引证文献(4)
  • 二级引证文献(2)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
短文本分类
KNN分类
类别特征
hownet
效率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导