基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决传统基于TF-IDF的K最近邻(KNN)分类算法在短文本分类时,出现特征维度过高和数据稀疏的问题,基于卷积神经网络和KNN,提出一种新的短文本分类算法.通过采用神经网络语言模型word2vec对短文本进行词向量的训练,并用训练好的词向量表示文本,使用卷积神经网络对短文本进行抽象特征的提取,在提取出抽象特征的基础上,运用KNN分类器进行短文本分类.分别在短文本中句子数目为2、4、6、8的数据集上进行测试,结果表明,与基于TF-IDF的KNN分类算法相比,该算法在准确率、召回率和FI值上平均提高了10.2%、21.1%和15.5%.
推荐文章
卷积神经网络CNN算法在文本分类上的应用研究
数据挖掘
机器学习
卷积神经网络
文本分类
KNN文本分类算法研究
文本分类
KNN
向量空间模型
基于词义消歧的卷积神经网络文本分类模型
文本分类
卷积神经网络
长短时记忆网络
特征提取
自然语言处理
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络和KNN的短文本分类算法研究
来源期刊 计算机工程 学科 工学
关键词 社交网络 卷积神经网络 K最近邻 短文本 机器学习 深度学习
年,卷(期) 2018,(7) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 193-198
页数 6页 分类号 TP391
字数 5382字 语种 中文
DOI 10.19678/j.issn.1000-3428.0047596
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨文忠 新疆大学信息科学与工程学院 68 208 7.0 12.0
2 殷亚博 新疆大学信息科学与工程学院 6 47 3.0 6.0
3 杨慧婷 新疆大学信息科学与工程学院 4 45 3.0 4.0
4 许超英 新疆大学软件学院 4 46 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (238)
参考文献  (11)
节点文献
引证文献  (30)
同被引文献  (82)
二级引证文献  (16)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(11)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(11)
  • 二级引证文献(0)
2018(11)
  • 引证文献(11)
  • 二级引证文献(0)
2019(24)
  • 引证文献(12)
  • 二级引证文献(12)
2020(11)
  • 引证文献(7)
  • 二级引证文献(4)
研究主题发展历程
节点文献
社交网络
卷积神经网络
K最近邻
短文本
机器学习
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导