基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着大数据时代的来临,传统的工作流计算平台已经无法满足大量工作流应用的计算要求.因此,工作流应用开始由原有的基础设施转移到更加高效、可靠、廉价的云平台上.针对现有的云工作流调度算法执行时间最小化、作业最优分配以及调度算法的收敛时间问题,提出一种基于多 Agent 系统的粒子群遗传优化云工作流调度算法.该算法首先利用粒子的自身历史最优位置和粒子群历史最优位置优化全局最优解的搜索过程,然后将系统中每个粒子作为一个 Agent,多 Agent间相互竞争和协调,最后在多 Agent 系统中引入遗传算法,通过 Agent 间的信息交互进行有目标地交叉变异操作,不仅避免粒子群的盲目随机化以及陷入局部最优解,而且加速了搜索全局最优解的收敛过程.使用真实工作流数据进行模拟实验,实验结果证明该算法的有效性.
推荐文章
基于粒子群优化的云工作流任务调度
云计算
工作流调度
粒子群算法
代价最优化
约束满意度
基于离散粒子群优化的云工作流调度
云工作流
云模型
离散粒子群算法
进化方程
基于代价优化的云工作流调度改进PSO算法
云计算
工作流
任务调度
粒子群算法
基于粒子群算法的工作流服务主体优选方法
工作流
负载均衡
多目标优化
粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多Agent系统的粒子群遗传优化云工作流调度算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 云工作流 作业调度 多 Agent系统 粒子群优化算法 遗传算法
年,卷(期) 2017,(6) 所属期刊栏目 人工智能:从知识发现到机器学习
研究方向 页码范围 1114-1124
页数 11页 分类号 TP181
字数 8088字 语种 中文
DOI 10.13232/j.cnki.jnju.2017.06.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭志平 广东石油化工学院计算机与电子信息学院 79 414 10.0 14.0
2 李启锐 广东石油化工学院计算机与电子信息学院 30 104 6.0 8.0
3 崔得龙 广东石油化工学院计算机与电子信息学院 33 83 5.0 7.0
4 何杰光 广东石油化工学院计算机与电子信息学院 15 12 1.0 2.0
5 吴家豪 广东工业大学计算机学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (26)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (16)
二级引证文献  (0)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
云工作流
作业调度
多 Agent系统
粒子群优化算法
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导