基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来互联网数据规模呈爆炸式增长,如何对大数据进行分析已成为热门话题.然而,采集的数据很难直接用于分析,需要进行一定程度的预处理,以提高大数据质量.通过使用分裂式的迭代过程,可以逐步将数据集分裂为子集,避免了传统聚类算法聚类开始时需要确定集群数的限制,并降低了算法的时间复杂度.此外,通过基于阈值的噪声数据过滤,可以在迭代过程中剔除噪音数据,提升了聚类算法对脏数据的忍耐力.
推荐文章
一种基于差分演化的K-medoids聚类算法
差分演化
聚类质量
K-medoids算法
全局优化
一种高效的K-medoids聚类算法
聚类
K-medoids算法
中心微调
增量候选
一种基于CF树的k-medoids聚类算法
聚类
k-中心点
CF树
微簇
Num-近邻方差优化的K-medoids聚类算法
局部方差
Num-近邻
邻域
初始聚类中心
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 xk-split:基于k-medoids的分裂式聚类算法
来源期刊 华东理工大学学报(自然科学版) 学科 工学
关键词 数据挖掘 聚类 k-means k-medoids 分裂
年,卷(期) 2017,(6) 所属期刊栏目 信息科学与工程
研究方向 页码范围 849-854,862
页数 7页 分类号 TP391
字数 6218字 语种 中文
DOI 10.14135/j.cnki.1006-3080.2017.06.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 虞慧群 华东理工大学计算机科学与工程系 113 814 14.0 24.0
2 陈逸斐 华东理工大学计算机科学与工程系 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (4)
同被引文献  (10)
二级引证文献  (0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
聚类
k-means
k-medoids
分裂
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东理工大学学报(自然科学版)
双月刊
1006-3080
31-1691/TQ
16开
上海市梅陇路130号
4-382
1957
chi
出版文献量(篇)
3399
总下载数(次)
2
总被引数(次)
27146
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导