基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
说话人聚类是说话人分离中的一个重要过程,然而传统的以贝叶斯信息准则作为距离测度的层次聚类方式,会出现聚类误差向上传递的情况.本文提出了一种逐级算法增强处理机制.当片段之间的最小贝叶斯信息准则距离超过设定的门限值时,或者类别个数到达一定程度时,将当前聚类结果作为初始类中心,通过变分贝叶斯迭代法重新对每个类别中的片段调优,最后再依据概率线性判别分析得分门限确定说话人个数.实验表明,本文方法在美国国家标准技术署08 summed测试集上,使得“类纯度”和“说话人纯度”比传统算法都有了一定提升,且使得说话人分离整体性能相对提升了27.6%.
推荐文章
一种基于变分贝叶斯的半监督双聚类算法
双聚类算法
变分贝叶斯
半监督学习
概率模型
基于变分贝叶斯算法的线性变参数系统辨识
非线性过程
线性变参数系统
多模型
变分贝叶斯算法
参数估计
基于变分贝叶斯算法的青霉素发酵过程建模
青霉素发酵过程
变分贝叶斯算法
融合模型
基于减法聚类与改进的模糊C-均值聚类算法的说话人识别方法的研究
说话人识别
减法聚类
改进的模糊C-均值聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变分贝叶斯改进的说话人聚类算法
来源期刊 数据采集与处理 学科 工学
关键词 说话人聚类 贝叶斯信息准则 概率线性判别分析 变分贝叶斯
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 54-61
页数 8页 分类号 TN912.34
字数 4948字 语种 中文
DOI 10.16337/j.1004-9037.2017.01.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李锐 中国科学技术大学电子科学与技术系 63 1219 18.0 34.0
2 李敬阳 13 74 5.0 8.0
3 王莉 8 35 4.0 5.0
4 王晓笛 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (7)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
说话人聚类
贝叶斯信息准则
概率线性判别分析
变分贝叶斯
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
论文1v1指导