基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Influence maximization is one fundamental and important problem to identify a set of most influential individuals to develop effective viral marketing strategies in social network. Most existing studies mainly focus on designing efficient algorithms or heuristics to find Top-K influential individuals for static network. However, when the network is evolving over time, the static algorithms have to be re-executed which will incur tremendous execution time. In this paper, an incremental algorithm DIM is proposed which can efficiently identify the Top-K influential individuals in dynamic social network based on the previous information instead of calculating from scratch. DIM is designed for Linear Threshold Model and it consists of two phases: initial seeding and seeds updating. In order to further reduce the running time, two pruning strategies are designed for the seeds updating phase. We carried out extensive experiments on real dynamic social network and the experimental results demonstrate that our algorithms could achieve good performance in terms of influence spread and significantly outperform those traditional static algorithms with respect to running time.
推荐文章
The influence of urbanization on karst rivers based on nutrient concentration and nitrate dual isoto
Urbanization
Urban river
Nitrate isotopes
Southwestern China
Chengguan River
The influence of climate and topography on chemical weathering of granitic regoliths in the monsoon
Granitic regolith
Chemical weathering
Supply-limited weathering
Kinetic-limited weathering
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Incremental Influence Maximization for Dynamic Social Networks
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 INFLUENCE MAXIMIZATION Dynamic SOCIAL network Linear THRESHOLD model PRUNING strategy
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 4-5
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
INFLUENCE
MAXIMIZATION
Dynamic
SOCIAL
network
Linear
THRESHOLD
model
PRUNING
strategy
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导