基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning models
推荐文章
1株H3N2亚型猪流感病毒的分离鉴定
H3N2
猪流感病毒
分离鉴定
广东1株H3N2亚型犬流感病毒的分离与鉴定
犬流感病毒
H3N2亚型
RT-PCR
序列分析
2009~2013年广西H1N1和H3N2亚型猪流感病毒血清学调查
猪流感病毒(SIV)
H1N1亚型
H3N2亚型
血清学调查
重组毒株
甘肃省猪流感(H3N2)抗体的血清学调查研究
猪流感
血清抗体
酶联免疫吸附试验(ELISA)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Predicting the Antigenic Variant of Human Influenza A(H3N2) Virus with a Stacked Auto-Encoder Model
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Stacked auto-encoder Antigenic VARIATION nfluenza Machine learning
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 71-73
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Stacked
auto-encoder
Antigenic
VARIATION
nfluenza
Machine
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导