基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
子空间聚类已经广泛应用于多个涉及高维数据聚类应用领域,受到机器学习研究者的广泛关注.子空间聚类方法是一种使用特征选择的聚类分析技术,通过选择重要特征子集实现对高维空间的低维表示,在实际应用中能够取得更好的性能,成为流行的高维数据聚类方法.与硬聚类方法相比,软聚类能够给出复杂数据更有意义的划分.扩展k-均值聚类并提出基于可靠性的正则化加权软k-均值新的子空间聚类方法(Reliability-based regularized weighted soft k-means clustering algorithm,RRWSKM),该方法能够计算每个特征对每个聚类的贡献度,从而找到与不同聚类相关的重要特征子集.另外,该方法能够通过调整模型参数准确地辨识数据模式,具有良好的聚类性能.该方法把维度加权熵和划分熵作为正则化项引入到目标函数,避免过拟合问题同时使更多的特征参与辨识聚类.为了提高算法的鲁棒性,使用可靠性测度获得特征权重初始值,提高算法的可靠性和性能.考虑到该算法是非凸优化问题,使用迭代优化方法得到优化问题的最优解.使用多个实际数据集对本文算法进行仿真验证,结果表明,与其他子空间聚类算法相比,该算法能够有效发现高维数据的低维表示,具有良好的聚类性能,适合高维数据的聚类.
推荐文章
基于优化初始中心的加权K-均值彩色图像聚类算法分析
彩色图像
聚类算法
加权K-均值
优化初始中心
图像分割
试验分析
基于层次的K-均值聚类
聚类
代价函数
层次
K-均值聚类
基于核聚类的K-均值聚类
核聚类
K-均值聚类
径向基函数(RBF)
支持向量机(SVM)
基于样本空间分布密度的初始聚类中心优化K-均值算法
关键词
聚类
K-均值聚类
初始中心
邻域
样本分布密度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于可靠性的正则化加权软k-均值的子空间聚类
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 软k-均值聚类 聚类相关维度权重 最大熵 高维数据 可靠性测度
年,卷(期) 2017,(3) 所属期刊栏目 硅基纳电子和光电子专栏
研究方向 页码范围 525-536
页数 12页 分类号 TP181
字数 7542字 语种 中文
DOI 10.13232/j.cnki.jnju.2017.03.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐桂云 中国矿业大学机电工程学院 82 290 9.0 14.0
2 任世锦 徐州师范大学计算机学院 13 66 5.0 7.0
3 杨茂云 中国矿业大学机电工程学院 6 19 2.0 4.0
5 李新玉 中国矿业大学机电工程学院 6 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (20)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(5)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
软k-均值聚类
聚类相关维度权重
最大熵
高维数据
可靠性测度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导