基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The systems based on image processing for vehicle type recognition is becoming more and fiercer. It plays an important role in traffic safety. In order to improve the problems that traditional Convolutional Neural Network has low accuracy of feature extraction from the low-resolution image, a novel model based on Deep Convolutional Neural Network (DCNN) was proposed. In this paper, our work mainly contains two aspects both extraction of feature dimension and recognition of vehicle image. Firstly, the learning way was introduced,and the raw image of vehicle subsampled with several different sizes was operated with the filter corresponding each channel in a way of convolution to extract the feature dimension of image. Secondly, the features dimension obtained from every channel were merged by a full connected layer. Eventually,features used to recognize the type of vehicle is got. The experiment shows that the architecture of DCNN model has a efficient performance on the recognition of vehicle image. Compared with the traditional algorithm of CNN, the results of experiment show that the mode of DCNN can achieve 97.6% accuracy and a higher precision is got.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Vehicle Type Recognition Based on Deep Convolution Neural Network
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 VEHICLE DEEP CONVOLUTION NEURAL network
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 115-117
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
VEHICLE
DEEP
CONVOLUTION
NEURAL
network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导