基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A algorithm of dynamic multi-step reinforcement learning based on virtual potential field path planning is proposed in this paper. Firstly, it is constructed the virtual potential field according to the known information. And then in view of Q learning algorithm of the QekT algorithm, a multi-step reinforcement learning algorithm is proposed in this paper. It can update current Q value used of future dynamic k steps according to the current environment status. At the same time, the convergence is analyzed. Finally the simulation experiments are done. It shows that the proposed algorithm and convergence and so on are more efficiency than similar algorithms.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
倒立摆的Reinforcement Learning模糊自适应控制
单级倒立摆
Reinforcement Learning
模糊自适应控制
Comprehensive geochemical/hydrochemical and geo-thermometry analysis of Unai geothermal field, Gujar
Geothermal energy
Hydrochemical
Geochemical
Geothermometery
Renewable energy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Multi-step Reinforcement Learning Algorithm of Mobile Robot Path Planning Based on Virtual Potential Field
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Robot Path planning Machine LEARNING LEARNING Virtual potential field
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 123-125
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Robot
Path
planning
Machine
LEARNING
LEARNING
Virtual
potential
field
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导