基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对稀疏子空间聚类(SSC)求得的系数矩阵过于稀疏和最小二乘回归子空间聚类(LSR)求得的系数矩阵过于稠密的问题,文中提出基于协同表示的子空间聚类算法(SCCR).结合SSC和LSR的优点,将l1范数和Frobenius范数引入同一优化问题中,使系数矩阵保证在同一子空间数据点联系(如LSR)的同时,消除不同子空间数据点之间的联系(如SSC).然后利用此系数矩阵建立相似矩阵,应用谱聚类得到聚类结果.实验表明SCCR可以提高聚类性能.
推荐文章
基于重建系数的子空间聚类融合算法
稀疏表示
低秩表示
子空间聚类
聚类融合
系数重建
稀疏条件下的重叠子空间聚类算法
重叠子空间聚类
混合范数
重叠概率模型
指数族分布
两阶段密度意识子空间聚类模型
数据挖掘
子空间聚类
网格聚类
高维数据
基于局部结构保留的级联子空间深度聚类
高维数据聚类
自编码器
聚类损失
重构损失
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于协同表示的子空间聚类
来源期刊 模式识别与人工智能 学科 工学
关键词 稀疏子空间聚类 最小二乘回归子空间聚类 Frobenius范数 谱聚类
年,卷(期) 2017,(3) 所属期刊栏目 研究与应用
研究方向 页码范围 251-259
页数 9页 分类号 TP301.6
字数 6652字 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.201703007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴小俊 江南大学物联网工程学院 170 1079 17.0 22.0
2 尹贺峰 江南大学物联网工程学院 7 31 3.0 5.0
3 董文华 江南大学物联网工程学院 4 10 2.0 3.0
4 傅文进 江南大学物联网工程学院 3 9 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (15)
二级引证文献  (1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
稀疏子空间聚类
最小二乘回归子空间聚类
Frobenius范数
谱聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导