作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提升海量数据下社交网络推荐系统的性能,将传统聚类方法与蛋白质网络的新特性相结合,提出了一种竞争-抑制节点模型(CINM).该模型将数据的整个处理流程分为节点重构、膜外聚类、膜内聚类及内容推荐4个部分,分别完成数据预处理、数据清洗、精度匹配与数据输出.在数据预处理过程中,通过矩阵运算,将复杂多维数据集构成的用户信息转换成结构化定量数据,并产生数据摘要.数据清理通过判断竞争值来获取用户的特征数据.在精度匹配阶段,基于蛋白质相互作用网络的相似性匹配原理获取相似性最大的一组值,并结合与用户相关联的数据项进行最终内容或关系的推荐.实验结果表明,CINM模型可以通过数据预处理和特征值竞争抑制机制较好地完成数据过滤,从而提高数据处理效率并提升最终推荐结果的精确性.
推荐文章
一种基于位置社交网络的地点推荐算法
地点推荐
用户相似度
用户签到
社交影响
基于位置社交网络的个性化兴趣点推荐
兴趣点推荐
位置信息
分类信息
流行度信息
社会信息
位置社交网络
科研社交网络中基于异质网络分析的列表级排序学习推荐方法研究
科研社交网络
论文推荐
异质网络
列表级排序学习
基于社交网络的推荐系统研究
推荐系统
社交网络
深度学习
矩阵分解
协同过滤
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PPIN的社交网络推荐系统
来源期刊 东南大学学报(自然科学版) 学科 工学
关键词 社交网络 蛋白质相互作用网络 聚类 推荐系统 大数据
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 478-482
页数 5页 分类号 TP393
字数 5478字 语种 中文
DOI 10.3969/j.issn.1001-0505.2017.03.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张琳 南京邮电大学计算机学院 44 414 10.0 19.0
2 张进 南京邮电大学计算机学院 9 29 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (283)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (15)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(4)
  • 参考文献(3)
  • 二级参考文献(1)
2013(5)
  • 参考文献(4)
  • 二级参考文献(1)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社交网络
蛋白质相互作用网络
聚类
推荐系统
大数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(自然科学版)
双月刊
1001-0505
32-1178/N
大16开
南京四牌楼2号
28-15
1955
chi
出版文献量(篇)
5216
总下载数(次)
12
总被引数(次)
71314
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导