基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统计算机辅助诊断中肺结节的特征提取方法依靠人工设计、操作复杂、识别率低等问题,提出了一种基于混合受限玻尔兹曼机的肺结节良恶性诊断方法.首先采用多层无监督卷积受限玻尔兹曼机自动对肺结节图像进行特征学习,然后利用分类受限玻尔兹曼机对获得的特征进行良恶性分类.为避免分类受限玻尔兹曼机在训练中出现的特征同质化问题,引入了交叉熵稀疏惩罚对其进行优化.实验结果表明,该方法有效避免了手动特征提取的复杂性,在肺结节良恶性分类的准确率、敏感性、特异性、ROC曲线下面积值上均优于传统诊断方法.
推荐文章
受限玻尔兹曼机与加权Slope One的混合推荐算法研究
受限玻尔兹曼机
加权SlopeOne
修正余弦相似度
Jaccard相似度
基于深度玻尔兹曼机的乐器分类问题研究
深度玻尔兹曼机
乐器分类
深度学习
平均场理论
动量项
基于混合受限波尔兹曼机的调制样式识别
调制识别
高阶累积量
混合受限波尔兹曼机
神经网络
格雷码
玻尔兹曼熵和克劳修斯熵的关系
玻尔兹曼熵
克劳修斯熵
广泛
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合受限玻尔兹曼机的肺结节良恶性诊断
来源期刊 计算机工程与应用 学科 工学
关键词 受限玻尔兹曼机 肺结节 良恶性诊断 计算机辅助诊断
年,卷(期) 2017,(23) 所属期刊栏目 图形图像处理
研究方向 页码范围 153-158
页数 6页 分类号 TP391
字数 4591字 语种 中文
DOI 10.3778/j.issn.1002-8331.1606-0174
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 强彦 太原理工大学计算机科学与技术学院 88 402 11.0 16.0
2 原杰 8 26 3.0 5.0
3 闫晓斐 太原理工大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (10)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
受限玻尔兹曼机
肺结节
良恶性诊断
计算机辅助诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导