基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
从海量数据中发现频繁模式一直是数据挖掘研究的热点,在零售市场数据分析、网络监控、网络使用挖掘和股票市场的预测等领域中也有着广泛的应用.尽管在过去的十年里,很多学者提出了许多基于静态数据集的频繁模式挖掘算法,而由于流数据持续、无限、有序而高速产生的特性,在流数据中隐藏的数据知识很可能随着时间的推移而产生变化,因而基于流数据的频繁模式挖掘应不同于以往基于静态数据集的频繁模式挖掘算法.为了更好地分析在线流数据,基于不同的时间粒度从流数据中抽取频繁模式并且监控频繁模式的变化,基于高效的FP-tree结构,借助倾斜时间窗口和MapReduce的思想,提出了针对数据流的频繁模式挖掘算法DPFP-stream.并将该算法在Storm平台上实现,算法数据源采用Kafka,并将中间结果存入内存数据库Redis中.通过大量的实验表明,该算法从高速的数据流中发现频繁模式的效率很高且性能稳定.在海量数据实时计算中,采用该算法,不仅能应对高速的数据流,而且能监控不同时间粒度的频繁模式的变化过程.
推荐文章
面向数据库全文检索的设计与实现
全文检索
Sybase数据库
系统集成
基于数据流的容灾系统的设计与实现
容灾
数据流复制
数据流回放
多流多科目实时数据处理算法的设计与实现
多数据流
多科目
参数合并
实时处理
数据分流
面向服务的气象资源数据访问架构设计与实现
面向服务架构
Web服务
二进制XML
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向流数据的DPFP-Stream算法的设计与实现
来源期刊 计算机技术与发展 学科 工学
关键词 DPFP-stream MapReduce Storm Redis
年,卷(期) 2017,(7) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 29-33
页数 5页 分类号 TP301.6
字数 3924字 语种 中文
DOI 10.3969/j.issn.1673-629X.2017.07.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李玲娟 南京邮电大学计算机学院 88 927 14.0 26.0
2 马可 南京邮电大学计算机学院 4 36 3.0 4.0
3 孙杜靖 南京邮电大学计算机学院 4 39 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (30)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DPFP-stream
MapReduce
Storm
Redis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导